Technical data

1. Functions

Power factor monitoring of minimum threshold φ_{1}
(terminals 15-16-18) and the following additional functions (selectable by means of DIP-switches)
DIP-Switch 1 additional maximum monitoring of threshold φ_{2} (terminals 25-26-28) (Win) or additional minimum monitoring of threshold φ_{2}, if $\varphi_{2}>\varphi_{1}\left(\varphi_{2} \mathrm{~min}\right)$
DIP-Switch 2

DIP-Switch 3 DIP-Switch 4 DIP-Switch 5 DIP-Switch 6 position of both output contacts either in on-position if fault occurs (n.o.) or in off-position if fault occurs (n.c.) alarm for disconnected consumer ($\mathrm{I}=0$) fault latch of threshold φ_{1} fault latch of threshold φ_{2} if E 1 is closed there will be either no evaluation of threshold $\varphi_{2}\left(\varphi_{2}\right.$ off) or E1 switches contact 2 without delay (delay $=0$)

2. Time ranges

Start-up suppression time:
Adjustment range
Tripping delay:
3s
1 s 3 min
3. Indicators

Green LED ON: Green LED flashes: Red LED ON:

Red LED flashes:
Red LED φ_{2} flashes (2:1) external alarm on control contact E1 (if delay =0)
Red LED φ_{2} and green LED flashing:
indication of thermistor fault
All LED flashing
indication of disconnected consumer (if I = 0)
All LED flashing (sequence):
wrong connection of L1i and L1k or frequency out of range

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4
(PZ1 required), IP rating IP20
Initial torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
indication of supply voltage indication of start-up suppression time indication of fault of the corresponding threshold indication of tripping delay of the orresponding threshold
-
5. Input circuit

Supply voltage:

24 V AC
110 VAC
230 V AC
Tolerance:

> 24 V AC
> 110 VAC

230 VAC
terminals A1-A2
terminals A1-A2 terminals A1-A2

24SCT 24V)
(D24SCT 110V)
(D24SCT 230V)
$\pm 10 \%$
$\pm 10 \%$
$\pm 10 \%$
(D24SCT 24V)
(D24SCT 110V)
(D24SCT 230V)

Rated frequency:
Rated consumption:

consumption:		
24 V AC	$3 \mathrm{VA} \mathrm{(2W)}$	(D24SCT 24V)
110 V AC	$3 \mathrm{VA}(2 \mathrm{~W})$	(D24SCT 110V)
230 VAC	$3 \mathrm{VA}(2 \mathrm{~W})$	(D24SCT 230V)

$230 \mathrm{VAC} \quad 3 \mathrm{VA}(2 \mathrm{~W})$
(D245C
Duration of operation: 100\%
Reset time:

100 ms

Residual ripple for DC:
Drop-out voltage: Insulation voltage: Surge voltage:

- 6. Output circuit

2 potential free change over contacts
Switching capacity (distance $<5 \mathrm{~mm}$): $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$
Switching capacity (distance > 5mm): 2000VA (8A / 250V AC)
Fusing:
8 A fast acting
Mechanical life: $\quad 20 \times 10^{6}$ operations
Electrical life:
2×10^{5} operations
at 1000 VA resistive load
Switching frequency:

Insulation voltage:
Surge voltage: max. 6 min at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (according to IEC 947-5-1)
250 V AC (according to IEC 664-1)
4 kV , overvoltage category III (according to IEC 664-1)

- 7. Measuring circuit

Input:
Voltage range:
Overload capacity:
Current range:
Overload capacity:
Input resistance:
Switching threshold:
Hysteresis factor: Insulation voltage:
Surge voltage:
voltage thermistor 1-phase mains 3-phase mains 400 V AC
3(N)~ 440V
1 to 16A
18A (90A max. 1s) $<10 \mathrm{~m} \Omega$
power factor 0.1 to 1.0
fixed, approx. 5\%
500 V AC (according to IEC 664-1)
4 kV , overvoltage category III (according to IEC 664-1) $<1.5 \mathrm{k} \Omega$
Response value (relay in off-position): $\geq 3.6 \mathrm{k} \Omega$
Release value (relay in on-position): $\leq 1.8 \mathrm{k} \Omega$
Disconnection (short circuit thermistor): no
Terminal voltage T1-T2:
terminals L1i-L1k-L2-L3 terminals T1-T2 (resp. \perp)

24 to 400 V AC
3(N)~ 24 to 440 V
440 V AC 3(N)~ 500V
8. Control contact E1

Function:

Connections:
Loadable:
Line length:
Control pulse length:
if E 1 is closed there will be either no evaluation of threshold φ_{2} or E1 switches contact Q2 without delay potential free terminals E1-E2 (resp. \perp) no
max. 10m (screened or twisted pair)

Technical data

- 9. Control contact R1

Function:
Connections:
Loadable:
Line length:
Control pulse length:
external reset-key
potential free, terminals R1-R2 (resp. \perp) no
max. 10m (twisted pair)
10. Control contact T1

Function: connection of max. 6 PTC-thermistors
Connections: potential free, terminals T1-T2 (resp. \perp)
Loadable:
Line length: no
max. 10m (screened or twisted pair)
Control pulse length:

11. Accuracy

Base accuracy:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
± 3 (of maximum scale value) $\pm 5 \%$ (of maximum scale value) $<5 \%$ $\leq 0.5 \% / \mathrm{V}$ $\leq 0.01 \% /{ }^{\circ} \mathrm{C}$
12. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1) -25 to $+40^{\circ} \mathrm{C}$ (according to UL 508)
-25 to $+70^{\circ} \mathrm{C}$
Storage temperature:
Transport temperature:
Relative humidity:
-25 to $+70^{\circ} \mathrm{C}$
15\% to 85\%
(according to IEC 721-3-3 class 3K3)
Pollution degree:
13. Dimensions

Functions

Load monitor for 1- or 3-phase mains and temperature monitoring of the motor winding

When the supply voltage U is applied, the set interval of the start-up suppression tsTART 2 begins (green LED flashing). Changes of the power factor during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily.

In both functions (Win as well as $\varphi 2 \mathrm{~min}$) the temperature monitoring is activated.
When the cumulative resistance of the PTC-circuit exceeds $3.6 \mathrm{k} \Omega$ (at least one of the PTCs has reached the cut-off temperature) and if the DIP-switch 2 is in the n.c.-position, the output relay Q2 switches into off-position instantaneously (red LED $\varphi 2$ and green LED are flashing). The output relay again switches into onposition (red LED not illuminated and green LED illuminated),
if the cumulative resistance falls below $1.8 \mathrm{k} \Omega$ by cooling down of the PTC.
When the DIP-switch 2 is in the n.o.-position, the mode of operation of the device remains unchanged, but the operation of the output relay Q2 is inverted.

Maximum monitoring of the threshold φ_{2}

(DIP-switch 1 in position Win)
When the measured power factor falls below the value adjusted at the $\cos \varphi 1$-regulator, the set interval of the tripping delay ($t_{\text {DE- }}$ LAY) begins (red LED $\varphi 1$ flashes). After the interval has expired and if the DIP-switch 2 is in the n.c.-position, the output relay Q1 switches into off-position (red LED $\varphi 1$ illuminated). When the measured value for the power factor again exceeds the set value, output relay Q1 switches into on-position (red LED $\varphi 1$ not illuminated). When the power factor exceeds the value adjusted at the $\cos \varphi 2$-regulator, the set interval of the tripping delay ($t_{\text {DELAY }}$) begins (red LED $\varphi 2$ flashes). After the interval has expired the output relay Q2 switches into off-position (red LED $\varphi 2$ illuminated). The output relay again switches into on-position (red LED $\varphi 2$ not illuminated), when the measured value for the power factor falls below the set value.
When the DIP-switch 2 is in the n.o.-position, the mode of operation of the device remains unchanged, but the operation of both output relays is inverted

function
 (Q1/Q2 n.c.)

Win.

Additional minimum monitoring of the φ_{2}-threshold

(DIP-switch 1 in position $\varphi_{2} \min$)
The set value for $\varphi 2$ must be greater than that for $\varphi 1$.
When the measured power factor falls below the value adjusted at $\cos \varphi 2$-regulator, the set interval of the tripping delay ($\mathrm{t}_{\text {DELAY }}$) begins (red LED $\varphi 2$ flashes). After the interval $t_{\text {dELAY }}$ has expired and if the DIP-switch 2 is in the n.c.-position, the output relay Q2 switches into off-position (red LED $\varphi 2$ illuminated). When the power factor falls below the value adjusted at the $\cos \varphi 1$ regulator, the set interval of the tripping delay ($t_{\text {DELAY }}$) begins again (red LED $\varphi 1$ flashes). After the interval has expired the output relay Q1 switches into off-position (red LED $\varphi 1$ illuminated).
Both output relays switch into on-position again (red LED for the corresponding threshold not illuminated), when the measured value for the power factor exceeds the value set at the according regulator.
When the DIP-switch 2 is in the n.o.-position, the mode of operation of the device remains unchanged, but the operation of both output relays is inverted.

Disconnected consumer (DIP-switch 3 in position I=0)

When the current flow between L1i and L1k is interrupted and if the DIP-switch 2 is in the n.c.-position, both output relays switch into off-position and all three LEDs are flashing in a sequence. When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up suppression.
When the DIP-switch 2 is in the n.o.-position, the mode of operation of the device remains unchanged, but the operation of both output relays is inverted.

Latch (DIP-switch 4 resp. 5 in position M1 resp. M2)
For both functions (Win as well as $\varphi 2 \mathrm{~min}$) it is possible to activate a fault latch.
If the function is selected for one of the two switching thresholds, (DIP-switch 4 in the position M1 for threshold $\cos \varphi 1$ resp. DIPswitch 5 in the position M 2 for threshold $\cos \varphi 2$), a short term error will be stored after the expiration of the tripping delay. The measuring cycle is restarted with the set interval of the start-up suppression after activating the internal or external reset key. The errors during the temperature monitoring of the motor winding are stored, too, using the D24SCT, when the DIP-switch 5 is in the position M2.

No evaluation of the φ_{2}-threshold (DIP-switch 6 in position φ_{2} off) For both functions (Win as well as $\varphi 2 \mathrm{~min}$) it is possible not to evaluate the threshold $\varphi 2$. This can be done by bridging the terminals E1-E2 (resp. \perp) using an external key or jumper-link. The temperature of the motor winding is monitored, even when the DIP-switch 6 is in the $\varphi 2$ off position.

External alarm on terminals E1-E2 (resp. \perp)
(DIP-switch 6 in position delay=0)
For both functions (Win as well as $\varphi 2 \mathrm{~min}$) the bridging of the terminals E1-E2 (resp. \perp) using an external key is interpreted as an external alarm. When the DIP-switch 2 is in the n.c.-position, the output relay Q2 switches into off-position instantaneously and the red LED $\varphi 2$ flashes in a ratio of 2:1. The output relay Q2 switches into on-position again as soon as the external key is opened.
When the DIP-switch 2 is in the n.o.-position, the mode of operation of the device remains unchanged, but the operation of both output relays is inverted.

Connections

