Technical data

1. Functions

Basic unit for emergency stop and safety gates applications

- 2. Indicators

Green LED (SUPPLY) ON:
Green LED (K1, K2) ON/OFF:
indication supply voltage indication of relay output

3. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4
(PZ1 required), IP rating IP20
Initial torque:
0.5 to 0.6 Nm

Terminal capacity:
2×0.14 to $0.75 \mathrm{~mm}^{2}$ without multicore cable end
1×0.14 to $2.5 \mathrm{~mm}^{2}$ without multicore cable end
2×0.25 to $0.5 \mathrm{~mm}^{2}$ with/without multicore cable end
1×0.25 to $2.5 \mathrm{~mm}^{2}$ flexible with multicore cable end

4. Input circuit

Supply voltage:
Tolerance
Rated frequency:
Rated consumption:
24 V AC/DC
terminals A1-A2
-15% to $+10 \%$
50 to 60 Hz
24V DC
24V AC
1.3W
$2.4 \mathrm{VA}(1.4 \mathrm{~W})$
Duration of operation: 100\%
Residual ripple for DC: 1.4Vss

5. Output circuit

3 forced normally open safety contacts and
1 forced normally closed control contact

Switching capacity:
Rated current:
Total current all contacts:
Fusing:
Mechanical life:
1380VA (6A / 230V AC/DC)
max. 6A
max. 12A
6A fast acting
10×10^{6} operations
Switching frequency:
$3600 / \mathrm{h}$ at $\mathrm{I}_{\mathrm{e}} 6 \mathrm{~A} / \mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$ AC (AC-15)
$3600 / \mathrm{h}$ at $\mathrm{I}_{\mathrm{e}} 3 \mathrm{~A} / \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}$ DC resp.
$360 / h$ at $I_{e} 6 A / U_{e} 24 V D C(D C-13)$
Insulation voltage:
Surge voltage:

300 V AC (according to IEC 664-1)
4 kV , overvoltage category III (according to IEC 664-1)
6. Control circuit
(only for supplying the control inputs)

Line resistance Y1-Y2:
$\leq 70 \Omega$
Control contact Y 1 :

Galvanically separated:	No (A1-A2-Y1)	
Rated output voltage:	24V DC	
Rated current:	40 mA	
Short circuit current I_{K} :	max. 1.4A	
Fusing:	PTC-Resistor	
Response time:	2s	
Reset time:	3 s	
ntrol contact Y2:		
Rated current:		40 mA
Response time t_{A} :	K1, K2	50 ms
Recovery time t_{R} :	K1, K2	40 ms
Activation time t_{M} :	Y2	min. 50ms
Reset time t_{w} :		$\leq 50 \mathrm{~ms}$

7. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1)
Storage temperature: $\quad-25$ to $+70^{\circ} \mathrm{C}$
Transport temperature: $\quad-25$ to $+70^{\circ} \mathrm{C}$
Relative humidity:
Pollution degree:
83% (at $23^{\circ} \mathrm{C}$), 93% (at $40^{\circ} \mathrm{C}$) (according to DIN 50016)
3 outside, 2 inside
(according to IEC 664-1)

Dimensions

Functions

Basic unit for emergency stop and safety gates applications
When supply voltage is applied to terminal A1 and A2 through the not-actuated E -stop switch or protective gate contact, the lockout preventing closing is effective. The actuating of the RESET key connected to terminals Y1/Y2 activates the control logic. This triggers the relays K1 and K2. The latter become self locking through their own contacts after the response time t_{A}. At the same time, the relay contacts of K1 and K2 deactivate the control logic.
After this switch-on phase, the three enabling current paths, which are intended for the output, are closed (terminal connections $13 / 14,23 / 24,33 / 34$) and the control contact is opened (terminal connections 41/42). Two LEDs provide a display, and these LEDs are associated with the safety channels K1/K2 and the supply voltage.
If the E-stop switch or the position switch is opened, the current leads for K1 and K2 relays are interrupted. The enabling current paths at the output are opened and the control contact is closed.

According to the particular application it is possible to have an automatic start shunting terminals $\mathrm{Y} 1 / \mathrm{Y} 2$.

Connections

