- Voltage monitoring in 3-phase mains
- Monitoring of phase sequence and phase failure
- Detection of reverse voltage
- Connection of neutral wire optional
- Supply voltage = measuring voltage
- 2 change-over contacts
- Width 22.5 mm
- Industrial design

Technical data

- 1. Functions

Monitoring of phase sequence, phase failure and detection of return voltage (by means of evaluating the asymmetry)

- 2. Time ranges

Start-up suppression time:
Tripping delay:
Adjustment range
fixed, max. 500 ms
fixed, max. 350 ms

- 3. Indicators

Green LED ON:
Yellow LED ON/OFF:
indication of supply voltage indication of relay output

- 4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position:
any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque:
max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage:
3(N)~ 115/66V
$3(\mathrm{~N}) \sim 230 / 132 \mathrm{~V}$
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$
Tolerance:
$3(\mathrm{~N}) \sim 115 / 66 \mathrm{~V}$
3(N)~ 230/132V
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$
Rated frequency:
Rated consumption:
3(N)~ 115/66V
3(N)~ 230/132V
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals (N)-L1-L2-L3 (G2PF115VS02) (= measuring voltage)
terminals (N)-L1-L2-L3
(= measuring voltage)
terminals (N)-L1-L2-L3
(= measuring voltage)
3(N)~ 99 to 132 V
3(N)~ 198 to 264 V
$3(\mathrm{~N}) \sim 342$ to 457 V
48 to 63 Hz
3VA
6VA
9VA
100\%
$<100 \mathrm{~ms}$
$>20 \%$ of the supply voltage
III (according to IEC 60664-1)
4kV
(G2PF115VS02)
(G2PF230VS02)
(G2PF400VS02)
(G2PF115VS02)
(G2PF230VS02)
(G2PF400VS02)

6. Output circuit

2 potential free change-over contacts
Rated voltage:
250 V AC
Switching capacity (distance $<5 \mathrm{~mm}$): $\quad 750 \mathrm{VA}(3 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$
Switching capacity (distance $>5 \mathrm{~mm}$): $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$
Fusing:
Mechanical life:
Electrical life:
Switching frequency:

Overvoltage category:
Rated surge voltage:
5A fast acting
20×10^{6} operations
2×10^{5} operations
at 1000 VA resistive load max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (according to IEC 947-5-1) III (according to IEC 60664-1) 4 kV

- 7. Measuring circuit

Measured variable:
AC sinus (48 to 63 Hz)
Input:
$3(\mathrm{~N}) \sim 115 / 66 \mathrm{~V}$
3(N)~ 230/132V
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$
Overload capacity:
$3(\mathrm{~N}) \sim 115 / 66 \mathrm{~V}$
3(N)~ 230/132V
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$
Input resistance:
$3(\mathrm{~N}) \sim 115 / 66 \mathrm{~V}$
3(N)~ 230/132V
3(N)~ 400/230V
Asymmetry:
Overvoltage category:
Rated surge voltage:
8. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence: -

9. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1)
-25 to $+40^{\circ} \mathrm{C}$ (according to UL 508)
Storage temperature: $\quad-25$ to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity:
15% to 85%
(according to IEC 721-3-3 class 3K3)
Pollution degree: $\quad 3$ (according to IEC 60664-1)

G2PF...S02

Functions

Phase sequence monitoring

When all the phases are connected in the correct sequence and the measured asymmetry is less than the fixed value, the output relay R switches into on-position (yellow LED illuminated). When the phase sequence changes, the output relay switches into off-position (yellow LED not illuminated).

Phase failure monitoring
When one of the three phases fails, the output relay R switches into off-position (yellow LED not illuminated).

Connections

Detection of reverse voltage

(by means of evaluation of asymmetry)
The output relay R switches into off-position (yellow LED not illuminated) when the asymmetry between the phase voltages exceeds the fixed value of the asymmetry.
An asymmetry caused by the reverse voltage of a consumer (e.g. a motor which continues to run on two phases only) does not effect the disconnection.

Dimensions

