- Industrial design
- Width 45mm
- AC or DC current monitoring in 1-phase mains
- 2 change over contacts

Technical data

- 1. Functions

AC or DC current monitoring in 1-phase mains inside the window between $I_{\text {min }}$ and $I_{\text {max }}$ with adjustable thresholds, timing for start-up suppression and tripping delay separately adjustable

2. Time ranges

Start-up suppression time:
Tripping delay:

Adjustment range	
0.5 s	5 s
0.5 s	5 s

3. Indicators Green LED ON: Yellow LED ON/OFF:
indication of supply voltage indication of relay output
4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4
(PZ1 required), IP rating IP20
nitial torque:
max. 1Nm
Terminal capacity
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circuit

For DC monitoring units the use of transformer modules TR3 is prescribed !!
Supply voltage:

6 to 220 V DC

24 to 48V AC/DC

12 to 440 V AC
Tolerance: 6 to 220V DC

24 to 48V AC/DC 12 to 440 V AC
Rated frequency:
Rated consumption: 6 to 220V DC 24 V AC/DC 36 V AC/DC 42 V AC/DC 12 to 440 V AC
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
terminals A1-A2
selectable via switching power supply modules SN3
terminals A1-A2
selectable via power supply modules NT3
terminals A1-A2 (galvanically separated) selectable via transformer modules TR3
depends on selected switching power supply module
-15% to +10\%
-15% to $+10 \%$
48 to 63 Hz
3W
2VA (2W)
3VA (3W)
3.5VA (3.5W)

4VA (4W)
4VA (3W)
100\%
500 ms
10% (switching power supply SN3 only) $>30 \%$ of the supply voltage

- 6. Output circuit

2 potential free change over contacts
switching capacity:
using:
Mechanical life:
Electrical life:

Switching frequency:

Insulation voltage: max. $6 / \mathrm{min}$ at 1000 VA resistive load (according to IEC 947-5-1) 250 V AC (according to IEC 664-1)

Surge voltage:
kV, overvoltage category II (according to IEC 664-1)

- 7. Measuring circuit Input: 1A AC

10A AC
$20 \mathrm{~mA} A C$
1A DC 5A DC
Overload capacity:
1A AC
2A AC
5A AC
10A AC
$20 \mathrm{~mA} A C$
1A DC
5A DC
Input resistance:
1A AC
$2 A A C$
10A AC
$20 \mathrm{~mA} A C$
1A DC
5A DC
Switching threshold $I_{\max }$: 1A AC
2A AC
5A AC
10A AC
$20 \mathrm{~mA} A C$
1A DC
5A DC
8. Accuracy

Base accuracy:
Adjustment accuracy:
Repetition accuracy
Voltage influence:
Temperature influence:
$\leq 5 \%$ (of maximum scale value)
<1\%
$\leq 0.5 \%$
$\leq 0.1 \% /{ }^{\circ} \mathrm{C}$

- 9. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1)
Storage temperature:
Transport temperature:
Relative humidity:
Pollution degree:
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15\% to 85\%
(according to IEC 721-3-3 class 3K3)
10. Dimensions
$\begin{array}{ll}\text { terminals i-k } & \text { (IW1AAC4X) } \\ \text { terminals i-k } & \text { (IW2AAC4X) }\end{array}$
terminals i-k (IW5AAC4X) terminals i-k (IW10AAC4X) terminals i-k (IW20mADC4X)
(IW1ADC4X)
(IW5ADC4X)
(IW1AAC4X)
(IW2AAC4X)
(IW5AAC4X)
(IW10AAC4X)
IW20mADC4X)
(IW1ADC4X)
(IW5ADC4X)
(IW1AAC4X)
(IW2AAC4X)
(IW5AAC4X)
(IW10AAC4X)
(IW20mADC4X)
IW1ADC4X
(IW5ADC4X)
(IW1AAC4X)
(IW2AAC4X)
(IW5AAC4X)
(IW10AAC4X)
(IW20mADC4X)
(IW1ADC4X)
(IW5ADC4X)

Functions

AC or DC current monitoring in 1-phase mains inside the window between $I_{\min }$ and $I_{\max }$ with adjustable thresholds, timing for start-up suppression and tripping delay separately adjustable

When the supply voltage U is applied (green LED illuminated), the set interval of the start-up suppression $\left(\mathrm{t}_{2}\right)$ begins. Changes of the measured current during this period do not affect the state of the output relay.

Window function

The output relay R switches into on-position (yellow LED illuminated), when the measured current exceeds the value adjusted at the MIN-regulator. When the measured current exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (t_{1}) begins. After the interval has expired, the output relay switches into off-position (yellow LED not illuminated). When the measured current falls below the maximum value, the output relay again switches into on-position (yellow LED illuminated). When the measured current falls below the minimum value, the set interval of the tripping delay begins. After the interval has expired, the output relay switches into off-position (yellow LED not illuminated).

Connections

