Timers - OCTO series

Installation design

- Width 35mm
- 8 functions
- 8 time ranges
- 2 change over contacts

Technical data

1. Functions

E ON delay

R OFF delay with control contact
Ws Single shot leading edge with control contact
Wa Single shot trailing edge with control contact
Es ON delay with control contact
Wu Single shot leading edge voltage controlled
Bp Flasher pause first
Wt Pulse detection

- 2. Time ranges

Time range	Adjustment range	
1 s	50 ms	1 s
10 s	500 ms	10 s
1 min	3 s	1 min
10 min	30 s	10 min
1 h	3 min	1 h
10 h	30 min	10 h
1 d	72 min	1 d
10 d	12 h	10 d

- 3. Indicators

Green LED ON: Green LED flashes: Yellow LED ON/OFF:
indication of supply voltage indication of time period indication of relay output

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position: any
Shockproof terminal connection according to VBG 4
(PZ1 required), IP rating IP20
Initial torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage:
$24 V$ DC
$24 V$ AC
110 V to 240 V AC
Tolerance:
24 V DC
24 V AC
110 V to 240 V AC
Rated frequency:
Rated consumption:
24 V AC/DC
110 VAC
230 VAC
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
terminals A1(+)-A3
terminals A1-A3
terminals A1-A2
$\pm 10 \%$
15\% to +10\%
-15% to $+10 \%$
48 to 63 Hz
1.5VA (1W)

2VA (1W)
8 VA (1.3W)
100\%
100 ms

10\%

$>30 \%$ of the supply voltage

- 6. Output circuit

2 potential free change over contacts
Switching capacity (distance < 5mm): 1250VA (5A / 250V AC)
Switching capacity (distance > 5mm): 2000VA (8A / 250V AC
Fusing: $\quad 8 \mathrm{~A}$ fast acting
Mechanical life: $\quad 20 \times 10^{6}$ operations
Electrical life: $\quad 2 \times 10^{5}$ operations
max. $60 / \mathrm{min}$ at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (according to IEC 947-5-1)
250V AC (according to IEC 664-1)
4 kV , overvoltage category III
(according to IEC 664-1)

- 7. Control contact

Connection:
Loadable:
Line length:
Control pulse length:
not potential free terminals A1-B1 yes, parallel load min. 1VA (0.5 W) terminals A2-B1
max. 10 m
DC $\quad \min .20 \mathrm{~ms}$

- 8. Accuracy

Base accuracy:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
$\pm 1 \%$ (of maximum scale value)
$\leq 5 \%$ (of maximum scale value)
$<0.5 \%$ or $\pm 5 \mathrm{~ms}$
9. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1)

Storage temperature:
Transport temperature:
Relative humidity:
Pollution degree:
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(according to IEC 721-3-3 class 3 K 3)
2, if built-in 3
(according to IEC 664-1)
10. Dimensions

Functions

ON delay (E)
When the supply voltage U is applied, the set interval t begins (green LED flashes). After the interval thas expired (green LED illuminated) the output relay R switches into on-position (yellow LED illuminated). This status remains until the supply voltage is interrupted.
If the supply voltage is interrupted before the expiry of the interval t , the interval already expired is erased and is restarted when the supply voltage is next applied.

OFF delay with control contact (R)
The supply voltage U must be constantly applied to the device (green LED illuminated).
When the control contact S is closed, the output relay R switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval t begins (green LED flashes). After the interval t has expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). If the control contact is closed again before the interval t has expired, the interval already expired is erased and is restarted with the next cycle.

R

Single shot leading edge with control contact (Ws)
The supply voltage U must be constantly applied to the device (green LED illuminated).
When the control contact S is closed, the output relay R switches into on-position (green LED illuminated) and the set interval t begins (green LED flashes). After the interval thas expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated).
During the interval, the control contact can be operated any number of times.
A further cycle can only be started when the cycle run has been completed.

Single shot trailing edge with control contact (Wa) The supply voltage U must be constantly applied to the device (green LED illuminated).
Closing the control contact S has no influence on the condition of the output relay R. When the control contact is opened, the output relay switches into on-position(yellow LED illuminated) and the set interval t begins (green LED flashes). After the interval t has expired (green LED illuminated), the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times.
A further cycle can only be started when the cycle run has been completed.

ON delay with control contact (Es)
The supply voltage U must be constantly applied to the device (green LED illuminated).
When the control contact S is closed, the set interval t begins (green LED flashes). After the interval thas expired (green LED illuminated) the output relay R switches into on-position (yellow LED illuminated). This status remains until the control contact is opened again.
If the control contact is opened before the interval t has expired, the interval already expired is erased and is restarted with the next cycle.

Single shot leading edge voltage controlled (Wu)
When the supply voltage U is applied, the output relay R switches into on-position (yellow LED illuminated) and the set interval t begins (green LED flashes). After the interval t has expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). This status remains until the supply voltage is interrupted.
If the supply voltage is interrupted before the interval t has expired, the output relay switches into off-position. The interval already expired is erased and is restarted when the supply voltage is next applied.

Flasher pause first (Bp)
When the supply voltage U is applied, the set interval t begins (green LED flashes). After the interval t has expired, the output relay R switches into on-position (yellow LED illuminated) and the set interval t begins again. After the interval t has expired, the output relay switches into off-position (yellow LED not illuminated).
The output relay is triggered at a ratio of 1:1 until the supply voltage is interrupted.

Pulse detection (Wt)
When the supply voltage U is applied (green LED illuminated), the output relay R switches into on-position (yellow LED illuminated). When the control contact S is closed, the set interval t begins (green LED flashes). So that the output relay remains in on-position, the control contact must be opened and closed again within the set interval t . If this does not happen, the output relay switches into off-position and all further pulses at the control contact are ignored.
To restart the function the supply voltage must be interrupted and re-applied.

Connections

