- Voltage monitoring in 3-phase mains
- Connection of neutral wire necessary
- 2 change over contacts
- Width 35mm
- Installation design

Technical data

- 1. Functions

Voltage monitoring in 3-phase mains with adjustable threshold, adjustable tripping delay and asymmetry
Min+Asym undervoltage monitoring with asymmetry monitoring
Max+Asym overvoltage monitoring with asymmetry monitoring
Window monitoring inside the window between $U_{\text {min }}$ and $U_{\text {max }}$ monitoring outside the window between $\mathrm{U}_{\min }$ and $\mathrm{U}_{\text {max }}$ undervoltage monitoring overvoltage monitoring monitoring the window between $\mathrm{U}_{\min }$ and $\mathrm{U}_{\text {max }}$ with asymmetry monitoring monitoring outside the window $\mathrm{U}_{\text {min }}$ and $\mathrm{U}_{\text {max }}$ with asymmetry monitoring

- 2. Time ranges

Start-up suppression time: Tripping delay:

Adjustment range
$0.5 \mathrm{~s} \quad 10 \mathrm{~s}$
3. Indicators

Green LED ON:
Green LED flashes:
Red LED ON/OFF:
indication of supply voltage output relay in on-position output relay in off-position indication of fault of corresponidng threshold

- 4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 50022
Mounting position:
any
Shockproof terminal connection according to VBG 4
(PZ1 required), IP rating IP20
Initial torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage:
Tolerance:
Rated frequency:
Rated consumption:
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
(= measuring voltage)
3N~400/230V terminals N-L1-L2-L3
-30% bis $+35 \%$
48 to 63 Hz
8VA (1.5W)
100\%
$<1 s$
$>40 \%$ of the supply voltage

6. Output circuit

2 potential free change over contacts
Switching capacity (distance < 5mm): 750VA (3A / 250V)
Switching capacity (distance >5mm):
1250VA (5A / 250V)
5 A fast acting
Mechanical life: $\quad 20 \times 10^{6}$ operations
Electrical life: 2×10^{5} operations at 1000 VA resistive load
Switching frequency: max. 60/min at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (according to IEC 947-5-1)
Insulation voltage: $\quad 250 \mathrm{~V}$ AC (according to IEC 664-1)
Surge voltage: 4 kV , overvoltage category III (according to IEC 664-1)

- 7. Measuring circuit

Input: (= supply voltage)
3N~ 400/230V terminals N-L1-L2-L3
3N~ 550/317V
Overload capacity
Input resistance:
Switching threshold
$\mathrm{U}_{\text {max }}$:
$\mathrm{U}_{\text {min }}:$

3N~ 350/202 to 3N~ 520/300V
3N~ 280/160 to 3N~ 480/277V 5\% to 20\%

- 8. Accuracy

Base accuracy:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
$\pm 5 \%$ (of maximum scale value)
$\leq 5 \%$ (of maximum scale value) $\pm 2 \%$
$\leq 0.05 \% /{ }^{\circ} \mathrm{C}$

- 9. Ambient conditions

Ambient temperature:
-25 to $+55^{\circ} \mathrm{C}$ (according to IEC 68-1)
Storage temperature:
Transport temperature:
Relative humidity:
Pollution degree
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(according to IEC 721-3-3 class 3K3)
2, if built-in 3
(according to IEC 664-1)

Functions

For all the functions the red LEDs are flashing alternating, when the minimum value for the measured voltage was chosen to be greater than the maximum value.
For all the functions the monitoring of the asymmetry can be activated. When the set value for asymmetry is exceeded, the output relay R switches into off position (green LED and both red LED flash).

Maximum monitoring (Max, Max+Asym)
When the measured voltage exceeds the value adjusted at the MAXregulator (red LED MAX illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired, the output relay R switches into off-position (green LED flashes). When the measured value for the voltage again falls below the set value, the red LED also begins to flash. The output relay switches into on-position (green LED illuminated), when the measured voltage falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated).

Minimum monitoring (Min, Min+Asym)
When the measured voltage exceeds the value adjusted at the MAXregulator (red LED MIN not illuminated) the output relay R switches into on-position (green LED illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator (red LED MIN illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired the output relay switches into off-position (green LED flashes). When the measured value for the voltage again exceeds the set value, the red LED also begins to flash.

Window function (Window, Win+Asym)
The output relay R switches into on-position (green LED illuminated) when the measured voltage exceeds the value adjusted at the MIN-regulator (red LED MIN not illuminated). When the measured voltage exceeds the value adjusted at the MAX-regulator (red LED MAX illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired the output relay switches into off-position (green LED flashes). The output relay again switches into on-position (green LED illuminated) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator (red LED MIN illuminated), the set interval of the tripping delay (DELAY) begins again. After the interval has expired the output relay switches into off-position (green LED flashes).

Inverted Window function (Win+Inv, Win+Inv+Asym)
The output relay R switches into off-position (green LED flashes) when the measured voltage exceeds the value adjusted at the MIN-regulator (red LED MIN not illuminated). When the measured voltage exceeds the value adjusted at the MAX-regulator (red LED MAX illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired the output relay switches into on-position (green LED illuminated). The output relay again switches into off-position (green LED flashes) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator (red LED MIN illuminated), the set interval of the tripping delay (DELAY) begins again. After the interval has expired the output relay switches into on-position (green LED illuminated).

Connections

Dimensions

Notes

