Monitoring relays – OCTO series

- Voltage monitoring in 3-phase mains
- Connection of neutral wire necessary
- 2 change over contacts
- Width 35mm
- Installation design

Technical data

1. Functions

Voltage monitoring in 3-phase mains with adjustable threshold, adjustable tripping delay and asymmetry

wiin+Asym	undervoltage monitoring
	with asymmetry monitoring
Max+Asym	overvoltage monitoring
	with asymmetry monitoring
Window	monitoring inside the window between
	U_{min} and U_{max}
Win+Inv	monitoring outside the window
	between U _{min} and U _{max}
Min	undervoltage monitoring
Max	overvoltage monitoring
Win+Asym	monitoring the window between U _{min} and
	U _{max} with asymmetry monitoring
Win+Inv+Asym	monitoring outside the window U _{min} and
	U _{max} with asymmetry monitoring

2. Time ranges

Subject to alterations and errors

Adjustment range Start-up suppression time: Tripping delay: 0.5s 10s

3. Indicators Green LED ON:

> Green LED flashes: Red LED ON/OFF:

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40 Mounted on DIN-Rail TS 35 according to EN 50022 Mounting position: any Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20 Initial torque: max. 1Nm

Terminal capacity:

1 x 0.5 to 2.5mm² with/without multicore cable end

threshold

- 1 x 4mm² without multicore cable end
- 2 x 0.5 to 1.5mm² with/without multicore cable end
- 2 x 2.5mm² flexible without multicore cable end

5. Input circuit

Rated frequency:

Drop-out voltage:

Supply voltage:

Tolerance:

Reset time:

(= measuring voltage) 3N~ 400/230V terminals N-L1-L2-L3 -30% bis +35% 48 to 63Hz 8VA (1.5W) Rated consumption: Duration of operation: 100% <1s Residual ripple for DC:

indication of supply voltage output relay in on-position

output relay in off-position

indication of fault of corresponidng

>40% of the supply voltage

6. Output circuit

2 potential free change of	over contacts		
Switching capacity (dista	nce < 5mm):	750VA (3A / 250V)	
Switching capacity (dista	nce > 5mm):	1250VA (5A / 250V)	
Fusing:	5A fast acting		
Mechanical life:	20 x 10 ⁶ operations		
Electrical life:	2 x 10 ⁵ operations		
	at 1000VA resistive load		
Switching frequency:	max. 60/min at	100VA resistive load	
	max. 6/min at 1	000VA resistive load	
	(according to IE	EC 947-5-1)	
Insulation voltage:	250V AC (according to IEC 664-1)		
Surge voltage:	4kV, overvoltage category III		
	(according to IE	EC 664-1)	
7 Measuring circu	uit		
Input:	(= cupply)	(oltago)	
input.	(= Supply \ 3N~ 400/2	30V terminals N I 1 I 2 I	2
Overload capacity:	3N~ 550/2	17\/	-0
Input resistance:	511 - 550/5	17.0	
Switching threshold	_		
	3NI~ 350/2	02 to 3N~ 520/300\/	
	3N~ 280/1	$3N \sim 280/160$ to $3N \sim 480/277$	
Asymmetry:	5% to 20%		
/ toyminou y.	0 /0 10 20 /0	,	
8. Accuracy			

Base accuracy: ±5% (of maximum scale value) Adjustment accuracy: ≤5% (of maximum scale value) Repetition accuracy: ±2% Voltage influence: Temperature influence: ≤0.05% / °C

9. Ambient conditions

Ambient temperature: Storage temperature: Transport temperature: Relative humidity:

Pollution degree:

-25 to +55°C (according to IEC 68-1) -25 to +70°C -25 to +70°C 15% to 85% (according to IEC 721-3-3 class 3K3) 2, if built-in 3 (according to IEC 664-1)

Functions

For all the functions the red LEDs are flashing alternating, when the minimum value for the measured voltage was chosen to be greater than the maximum value.

For all the functions the monitoring of the asymmetry can be activated. When the set value for asymmetry is exceeded, the output relay R switches into off position (green LED and both red LED flash).

Maximum monitoring (Max, Max+Asym)

When the measured voltage exceeds the value adjusted at the MAXregulator (red LED MAX illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired, the output relay R switches into off-position (green LED flashes). When the measured value for the voltage again falls below the set value, the red LED also begins to flash. The output relay switches into on-position (green LED illuminated), when the measured voltage falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated).

Minimum monitoring (Min, Min+Asym)

When the measured voltage exceeds the value adjusted at the MAXregulator (red LED MIN not illuminated) the output relay R switches into on-position (green LED illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator (red LED MIN illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired the output relay switches into off-position (green LED flashes). When the measured value for the voltage again exceeds the set value, the red LED also begins to flash.

Window function (Window, Win+Asym)

The output relay R switches into on-position (green LED illuminated) when the measured voltage exceeds the value adjusted at the MIN-regulator (red LED MIN not illuminated). When the measured voltage exceeds the value adjusted at the MAX-regulator (red LED MAX illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired the output relay switches into off-position (green LED flashes). The output relay again switches into on-position (green LED illuminated) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator (red LED MIN illuminated), the set interval of the tripping delay (DELAY) begins again. After the interval has expired the output relay switches into off-position (green LED flashes).

Inverted Window function (Win+Inv, Win+Inv+Asym) The output relay R switches into off-position (green LED flashes) when the measured voltage exceeds the value adjusted at the MIN-regulator (red LED MIN not illuminated). When the measured voltage exceeds the value adjusted at the MAX-regulator (red LED MAX illuminated), the set interval of the tripping delay (DELAY) begins. After the interval has expired the output relay switches into on-position (green LED flashes) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator (red LED MIN illuminated), the set interval of the tripping delay (DELAY) begins again. After the interval has expired the output relay switches into on-position (green LED illuminated).

Dimensions

Notes

Subject to alterations and errors

www.tele-power-net.com

