Monitoring relays - TREND series

- Industrial design
- **►** Width 45mm
- AC/DC current monitoring in 1-phase mains
- Fault latch
- ► Position of output relay presettable
- 1 change over contact

Technical data

1. Functions

AC/DC overcurrent monitoring in 1-phase mains with adjustable threshold, timing for start-up suppression and tripping delay separately adjustable and adjustable hysteresis

2. Time ranges

Adjustment range Start-up suppression time: 0.1s10s Tripping delay: 0.1s 10s

3. Indicators

Green LFD ON: indication of supply voltage Yellow LED ON/OFF: indication of relay output

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40 Mounted on DIN-Rail TS 35 according to EN 50022 Mounting position: any Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20

Initial torque: max. 1Nm

Terminal capacity:

1 x 0.5 to 2.5mm² with/without multicore cable end

1 x 4mm² without multicore cable end

2 x 0.5 to 1.5mm² with/without multicore cable end

2 x 2.5mm2 flexible without multicore cable end

5. Input circuit

Supply voltage:

12 to 440V AC terminals A1-A2 (galvanically separated)

selectable via transformer modules TR2

Tolerance: -15% to +10% Rated frequency: 48 to 63Hz Rated consumption: 2VA (1.5W) 100% Duration of operation: Reset time: 500ms

Residual ripple for DC:

>30% of the supply voltage Drop-out voltage:

6. Output circuit

1 potential free change over contact

Switching capacity (distance < 5mm): Switching capacity (distance > 5mm): 750VA (3A / 250V AC) 1250VA (5A / 250V AC)

5A fast acting Fusing: Mechanical life: 20 x 10⁶ operations 1 x 10⁵ operations at 1000VA resistive load Electrical life:

max. 60/min at 100VA resistive load Switching frequency:

max. 6/min at 1000VA resistive load (according to IEC 947-5-1)

250V AC (according to IEC 664-1) 4kV, overvoltage category III (according to IEC 664-1) Insulation voltage: Surge voltage:

7. Measuring circuit

100mA AC/DC 1A AC/DC Input: terminals K-I3(+) terminals K-I2(+) 10A AC/DC terminals K-I1(+)

Overload capacity: 100mA AC/DC 1A AC/DC

4A 15A (distance >20mm) 10A AC/DC

100mA AC/DC 1Ω Input resistance: 1A AC/DC 100mQ 10A AC/DC $10m\Omega$

10% to 100% Switching threshold Is: Hysteresis: 5% to 50%

8. Control contact Y

Function: fault latch (Y1-Y2 bridged) Connections: potential free, terminals Y1-Y2 Loadable: nο Line length: max. 5m

Control pulse length:

9. Accuracy

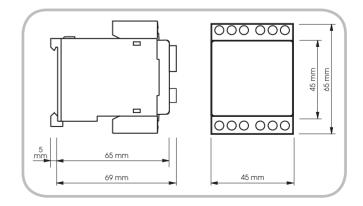
Base accuracy: Adjustment accuracy: +7% (of maximum scale value) ≤5% (of maximum scale value)

<1% Repetition accuracy:

≤0.02% / 1% supply voltage change ≤0.1% / °C Voltage influence:

Temperature influence:

10. Ambient conditions


Ambient temperature: -25 to +55°C (according to IEC 68-1)

Storage temperature: -25 to +70°C Transport temperature: -25 to +70°C 15% to 85% Relative humidity:

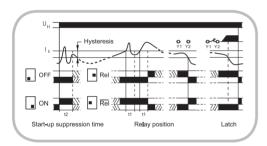
(according to IEC 721-3-3 class 3K3)

3 (according to IEC 664-1) Pollution degree:

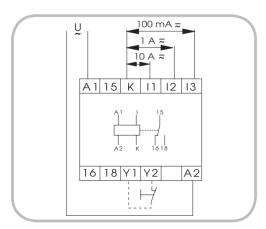
11. Dimensions

Functions

AC/DC overcurrent monitoring in 1-phase mains with adjustable threshold, timing for start-up suppression and tripping delay separately adjustable and adjustable hysteresis


When the supply voltage U is applied (green LED illuminated), the set interval of the start-up suppression (t_2) begins. Irrespective of the relay position under normal operation, the relay position for the duration of the start-up suppression can be selected with the DIP-switch 3: Relay switches into on-position (on) or remains in off-position (off).

Changes of the measured current during this period do not affect the state of the output relay.


Overcurrent monitoring

When the measured current exceeds the value adjusted at the I_s -regulator the set interval of the tripping delay (I_1) begins. After the interval has expired and if the DIP-switch 2 is in the position REL (n.o.), the output relay R switches into on-position (yellow LED illuminated). When the measured current falls below the value adjusted at the I_s -regulator by more than the value adjusted at the Hysteresis-regulator the output relay switches into off-position (yellow LED not illuminated). If the fault latch is activated (bridge Y1-Y2) and the measured current has exceeded the set value once, the output relay remains in the on-position even if the measured current falls below that value by more then the hysteresis. After resetting the fault latch (opening the bridge Y1-Y2) the output relay switches into off-position.

If instead of opening the bridge Y1-Y2 the supply voltage is disconnected and re-applied the measuring cycle begins again with the set interval of the start-up suppression (t₂). When the DIP-switch 2 is in the position REL (n.c.), the mode of operation of the device remains unchanged, but the operation of the output relay is inverted.

Connections

