Softstarters - TSG series

- Industrial design
- Width 22.5mm
- 1-phase control
- Reduced mechanical stress on drives
- Maintenance-free

Technical data

1. Functions

Reducing mechanical stress on drives during the acceleration phase of motors

- 2. Time ranges
- Acceleration time Retardation time

Adjustment range 20s 0s

3. Indicators Green LED ON: Yellow LED ON:

indication of supply voltage indication of max. output voltage

4. Mechanical design

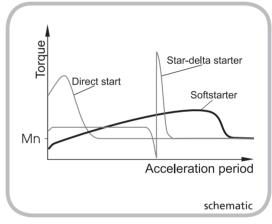
elf-extinguishing plastic housing, IP rating IP40 Mounted on DIN-Rail TS 35 according to EN 50022 Mounting position: any Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20

Terminal capacity: 1 x 0.5 to 2.5mm² with/without multicore cable end 2 x 0.5 to 1.0mm² with/without multicore cable end

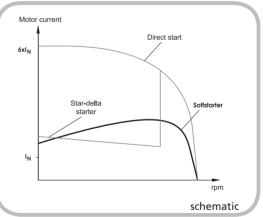
5. Input circuit Supply voltage: intern Duration of operation: 100%

internally generated

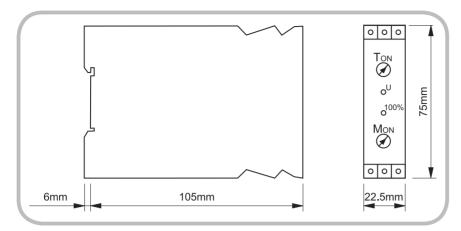
6. Power circuit S


Supply voltage:		
3~230V	terminals L1-L2-L3	(TSG 2,2-230VAC)
3~400V	terminals L1-L2-L3	(TSG 2,2-400VAC)
Tolerance:	±20%	
Rated frequency:	50 to 60Hz	
Starting torque:	0% to 100%	
Starting current:	max. 16A	
Start-up cycles:	max. 30/h at medium load	
Impulse series relay:	internal	
Load:	max. 1.3kW	(TSG 2,2-230VAC)
	max. 2.2kW	(TSG 2,2-400VAC)
Surge voltage:	2.5kV (according to IEC 60947-1 and	
	DINVDE 0110 Teil1)	
Insulation voltage:	345/600V	
5	(according to IEC60947-1, 4.3.1.2)	

7. Ambient conditions


Ambient conditions:	-20 to +45°C (according to IEC 68-1)
Storage temperature:	-10 to +70°C
Transport temperature:	-10 to +70°C
Relative humidity:	5% to 95% not condensing
Pollution degree:	2 (according to EN 60947-1 and
-	DINVDE 0110, Part 1, 4.2)

Advantages of softstarters


Reduced starting torque

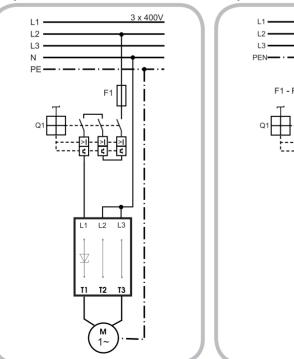
Reduced starting current

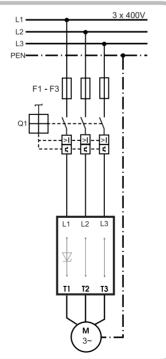
Dimensions

Functions

Controllable softstart of a motor

The softstarters of the TSG series have been designed for asynchronous machines with squirrel-cage rotors to counter the disadvantage of these units, namely the high startup current and the associated jerky startup of the motor.


The ramped increase of the motor voltage is achieved with phase control in one phase. Control over acceleration is performed by a special processor.


When the supply voltage is applied, the TSG increases the stator voltage of this phase linearly over the entire interval of the acceleration time (T_{ON}) to full control voltage. The two other phases are connected directly to the mains. The time for this voltage ramp can be set on the T_{ON} controller to any value from 0 to 20 seconds. As the voltage increases, so too does the torque, just rising above the load moment. The motor therefore starts

Connections

1-phase connection

3-phase connection

with slow acceleration.

By specifying a motor-specific startup moment the voltage (torque) increases rapidly when the softstarter is activated, until the startup torque set on the M_{ON} controller is reached. Only then does the voltage start increasing slowly for the remaining acceleration time until full system voltage is reached. In this way, more effective use is made of the startup time and wear and tear is kept to a minimum.

www.tele-power-net.com

