Monitoring relays - TREND series

TUH4X

- Industrial design
- Width 45mm
- AC/DC voltage monitoring in 1-phase mains
- Fault latch
- Position of output relay presettable
- I change over contact

1. Functions

AC/DC overvoltage monitoring in 1-phase mains with adjustable threshold, timing for start-up suppression and tripping delay separately adjustable and adjustable hysteresis

0.1s

0.1s

2. Time ranges

Start-up suppression time: Tripping delay:

Adjustment range 10s 10s

indication of supply voltage

indication of relay output

3. Indicators Green LED ON:

Yellow LED ON/OFF:

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40 Mounted on DIN-Rail TS 35 according to EN 50022 Mounting position: any Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20 max. 1Nm Initial torque:

Terminal capacity:

- 1 x 0.5 to 2.5mm² with/without multicore cable end
- 1 x 4mm² without multicore cable end 2 x 0.5 to 1.5mm² with/without multicore cable end
- 2 x 2.5mm² flexible without multicore cable end

5. Input circuit

Supply voltage:

Tolerance: Rated frequency:

Reset time:

12 to 440V AC terminals A1-A2 (galvanically separated) selectable via transformer modules TR2 -15% to +10% 48 to 63Hz 2VA (1.5W) Duration of operation: 100%

>30% of the supply voltage

Drop-out voltage: 6. Output circuit

Rated consumption:

Residual ripple for DC:

over contact
1250VA (5A / 250V AC)
5A fast acting
20 x 10 ⁶ operations
1 x 10 ⁵ operations
at 1000VA resistive load
max. 60/min at 100VA resistive load
max. 6/min at 1000VA resistive load
(according to IEC 947-5-1)
250V AC (according to IEC 664-1)
4kV, overvoltage category III
(according to IEC 664-1)

500ms

7. Measuring circuit

Input:	30V AC/DC 60V AC/DC	terminals E1-F1(+) terminals E1-F2(+)
	300V AC/DC 600V AC/DC	terminals E1-F3(+) terminals E2-F3(+)

Overload capacity:	30V AC/DC	60V
1 9	60V AC/DC	80V
	300V AC/DC	360V
	600V AC/DC	720V
Input resistance:	30V AC/DC	33kΩ
	60V AC/DC	80kΩ
	300V AC/DC	470kΩ
	600V AC/DC	1MΩ
Switching threshold U _s :	10% to 100%	
Hysteresis:	5% to 50%	

no

<1%

≤0.02% / °C

max. 5m

8. Control contact Y

Function: Connections: Loadable: Line length: Control pulse length:

9. Accuracy

Base accuracy Adjustment accuracy: Repetition accuracy: Voltage influence: Temperature influence:

10. Ambient conditions Ambient temperature:

Storage temperature:

Relative humidity:

Pollution degree:

Transport temperature:

-25 to +55°C (according to IEC 68-1) -25 to +70°C -25 to +70°C 15% to 85% (according to IEC 721-3-3 class 3K3) 3 (according to IEC 664-1)

≤0.02% / 1% supply voltage change

fault latch (Y1-Y2 bridged)

potential free, terminals Y1-Y2

±5% (of maximum scale value)

≤5% (of maximum scale value)

11. Dimensions

Functions

AC/DC overvoltage monitoring in 1-phase mains with adjustable threshold, timing for start-up suppression and tripping delay separately adjustable and adjustable hysteresis

When the supply voltage U is applied (green LED illuminated), the set interval of the start-up suppression (t_2) begins. Irrespective of the relay position under normal operation, the relay position for the duration of the start-up suppression can be selected with the DIP-switch 3: Relay switches into on-position (on) or remains in off-position (off).

Changes of the measured voltage during this period do not affect the state of the output relay.

Overvoltage monitoring

When the measured voltage exceeds the value adjusted at the U_s -regulator the set interval of the tripping delay (t₁) begins. After the interval has expired and if the DIP-switch 2 is in the position REL (n.o.), the output relay R switches into on-position (yellow LED illuminated). When the measured voltage

falls below the value adjusted at the U_s-regulator by more than the value adjusted at the Hysteresis-regulator the output relay switches into off-position (yellow LED not illuminated). If the fault latch is activated (bridge Y1-Y2) and the measured voltage has exceeded the set value once, the output relay remains in the on-position even if the measured voltage falls below that value by more then the hysteresis. After resetting the fault latch (opening the bridge Y1-Y2) the output relay switches into off-position.

If instead of opening the bridge Y1-Y2 the supply voltage is disconnected and re-applied the measuring cycle begins again with the set interval of the start-up suppression (t_2). When the DIP-switch 2 is in the position REL (n.c.), the mode of operation of the device remains unchanged, but the operation of the output relay is inverted.

Connections

www.tele-power-net.com