Safety relays - ZK series

ZK32x90

- Industrial design
- Width 90mm
- Single or dual channel activation
- 3 N/O safety contacts, 1 N/O fleeting and 1 N/C control contact
- Cross monitoring
- Stop-category 0 (according to EN 60204-1)
- Safety-category 4 (according to EN 954-1)

Technical data

1. Functions

Basic unit for emergency stop and safety gates applications

2. Indicators

Green LED (SUPPLY) ON: Green LED (K2) ON/OFF: Green LED (K3) ON/OFF: indication of supply voltage indication of relay output indication of relay output

3. Mechanical design

Self-extinguishing plastic housing, IP rating IP40 Mounted on DIN-Rail TS 35 according to EN 50022 Mounting position: any Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20 Initial torque: 0.8 to 1.0Nm Terminal capacity: 2 x 2.5mm² without multicore cable end

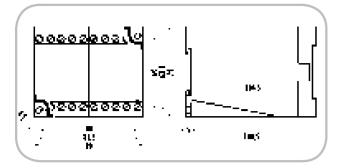
 $2 \times 1.5 \text{mm}^2$ with/without multicore cable end

4. Input circuit

Supply voltage:		
24V DC	terminal A1-A2	(ZK32x90 24VDC)
115V AC	terminal A1-A2	(ZK32x90 115VAC)
230V AC	terminal A1-A2	(ZK32x90 230VAC)
Tolerance:	-20% to +10%	
Rated frequency:	50 to 60Hz	
Rated consumption:		
24V DC	2.4W	(ZK32x90 24VDC)
115V AC	3.2VA(2.5W)	(ZK32x90 115VAC)
230V AC	3.2VA(2.5W)	(ZK32x90 230VAC)
Duration of operation:	100%	
Residual ripple for DC:	2.4V _{ss}	

5. Output circuit

Release 11/01


3 normally open forced safety contacts, 1 normally open forced fleeting contact and 1 normally closed forced control contact Switching capacity: 1380VA (6A/230V AC/DC) Rated current: max. 6A Total current all contacts: max. 18A Fusing: 6A fast acting Mechanical life: 10 x 10⁶ operations Switching frequency: 3600/h at I_e 6A / U_e 230V AC (AC-15) 360/h at I_e 6A / U_e 24V DC (DC-13) Insulation voltage: 250V AC (according to IEC 664-1) Surge voltage: 4kV, overvoltage category III according to IEC 664-1)

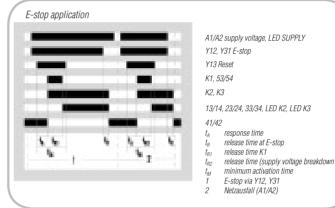
6. Control circuit			
(only for supplying the control inputs)			
Line resistance:	≤70Ω	•	
Control contacts Y1-Y2:			
Galvanically separated:	No (A1-A2-Y11-Y21)		
Rated voltage:	24V DC		
No-load voltage:	≤40V DC		
Rated current:	80mA		
Short circuit current I _K :			
Fusing:	PTC-resisto	• • •	
		t proof transformer (AC)	
Response time PTC:	3s		
Recovery time PTC:	2s		
Control contacts Y12, Y13, Y14, Y31			
Rated current input:	K1	100mA	
	K2, K3	40mA	
Response time t _A :	K1, K2, K3		
Release time t _R :	K2, K3	5ms (E-stop)	
Release time t _{R1} :	K1	70ms (ON-cycle)	
Release time t _{R2} :		100ms (interruption of	
	1/1	supply voltage)	
Activation time t_M :	K1	min. 60ms	
7. Ambient conditions			

Subject to alterations and errors

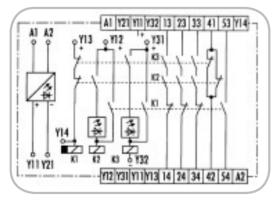
ZK32x90

Dimensions

Functions


Basic unit for emergency stop and safety gates applications

Following application of the supply voltage to terminals A1/A2, and if the E-stop switch is not activated, the relay K1 is energised by the RESET switch. The contacts of the relay K1 trigger the relays K2 and K3. The latter become self-locking through their own contacts. At the same time, the relay contacts of K2 and K3 de-energise K1 which releases. After a drop-out delay time t_R this relay switches into off-position. After this switch on phase, the three enabling current paths (13/14, 23/24, 33/34), which are intended for the output, are activated. The fleeting contact 53/54 is closed only during the time when K1 is energised. It can be used, e.g., for indicator purposes or to monitor the RESET- switch. Three LEDs provide a display, and these LEDs are associated with the safety channels and the power supply.


If the E-stop switch is activated, the current leads for K2 and K3 relays are interrupted. The enabling current path 13/14, 23/24, 33/34 are interrupted and the normally closed contact 41/42 is closed.

Cross monitoring

With two channel wiring of the E-stop circuit, it is possible to monitor the presence of a short circuit in the cables connected to it (cross monitoring). If a fault occurs, the voltage present at Y11/Y12 is short-circuited. This causes the immediate return of the relays K2 and K3 to their off-position and the activation of the protective internal electronic circuitry.

www.tele-power-net.com

